Efficient Harmonic Simulation of a Trabecular Bone Finite Element Model by means of Model Reduction

نویسندگان

  • E. B. Rudnyi
  • B. van Rietbergen
  • J. G. Korvink
چکیده

Three-dimensional serial reconstruction techniques allow us to develop very detailed microfinite element (micro-FE) model of bones that can very accurately represent the porous bone micro-architecture. However, such models are of very high dimension and, at present, simulation is limited to a linear elastic analysis only. In the present paper, we suggest to use model reduction in order to enable harmonic simulation for micro-FE models. We take two bone models of dimensions 130 000 and 900 000 and report results for implicit moment matching based via the Arnoldi process. We demonstrate that for the fist model a low-dimensional subspace of dimension 10 allows us to accurately describe frequency response up to 190 Hz. For the second model, a low-dimensional subspace of dimension 25 is enough to accurately describe frequency response up to 30 Hz. We show that the time to perform model reduction and then to simulate the low-dimensional model is orders of magnitude less than that needed for harmonic simulation of the original model. Introduction Fig. 1 sketches the micro finite element analysis [1]. Micro computer tomography (CT) is employed to make 3D high-resolution images (~50 microns) of a bone. Then the 3D reconstruction is directly transformed into an equally shaped micro finite element model by simply converting all bone voxels to equally sized 8-node brick elements. This results in finite element (FE) models with a very large number of elements (~ 1 10 million elements per cm) and special iterative solvers are usually required to solve such high dimensional problems. This allows us to simulate, for example, compression tests, and in this way it is possible to calculate the stiffness of a bone specimen while fully accounting for its micro-architecture. Such models can be used, for example to study differences in bone tissue loading between healthy and osteoporotic human bones during quasi static loading [2]. The main disadvantage of this approach is its huge computational requirements because of the high dimensionality of the models (on the order of 100 millions nodes). This led to the fact that such a computational analysis is limited to a static solution. There is increasing evidence, however, that bone responds in particular to dynamic loads [3]. It has been shown that the application of high-frequency, very low magnitude strains to a bone can prevent bone loss due to osteoporosis and can even result in increased bone strength in bones that are already osteoporotic. In order to better understand this phenomenon, it is necessary to determine the strain as sensed by the bone cells due to this loading. This would be possible with the micro-FE analysis, but then such an analysis need to be a dynamic one. Fig. 1. Micro finite element analysis. In the present study, it is investigated if a new technique called model order reduction can make the dynamic analysis feasible. Model order reduction is a relatively new area of mathematics that aims at finding a low-dimensional approximation for the high-dimensional system of ordinary differential equations. It has been used successfully over the last few years in different engineering disciplines like electrical engineering, structural mechanics, heat transfer, acoustics and electromagnetics [4]. We start by a short overview of how model order reduction can speed up harmonic simulation. Then we present results of harmonic analysis with the use of model reduction for the two microFE models representing bone specimens, one model with 42 528 and one with 305 066 nodes (number of equations is three times more). Harmonic Simulation by Means of Model Order Reduction After the discretization in space of a mechanical model, one obtains a system of ordinary differential equations of the second order as follows € M d x(t) dt 2 + E dx(t) dt + Kx(t) = Fu(t) (1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-Physics Simulation Model Based on Finite Element Method for the Multi-Layer Switched Reluctance Motor

Using ANSYS finite element (FE) package, a multi-physics simulation model based on finite element method (FEM) is introduced for the multi-layer switched reluctance motor (SRM) in the present paper. The simulation model is created totally in ANSYS parametric design language (APDL) as a parametric model usable for various conventional types of this motor and it is included electromagnetic, therm...

متن کامل

Immediately loaded Xive and Nisastan implants the effect of macro-design on distribution of strain in surrounding bone: A finite element analysis

Immediately loaded Xive and Nisastan implants the effect of macro-design on distribution of strain in surrounding bone: A finite element analysis Dr. A. Fazel * - Dr. SH. A. Alai ** - Dr. M. Rismanchian *** *Associate Professor of Prosthodontics Dept., Faculty of Dentistry and Dental Research Center, Tehran University / Medical Sciences. **Assistant Professor of Prosthodontics Dept., Faculty of...

متن کامل

Finite element simulation of two-point incremental forming of free-form parts

Two-point incremental forming method is considered a modern technique for manufacturing shell parts. The presence of bottom punch during the process makes this technique far more complex than its conventional counterpart i.e. single-point incremental forming method. Thus, the numerical simulation of this method is an essential task, which leads to the reduction of trial/error costs, predicts th...

متن کامل

Experimental and Finite Element Studies on Free Vibration of Automotive Steering Knuckle

The main aim of this research is to determine the best material for manufacturing of steering knuckle in order to reduce the weight using aluminum alloy and Metal Matrix Composite (MMC). To achieve this purpose, the Modal test has been performed to study vibrational behavior of steering knuckle. CAD Model has been prepared by using coordinate measuring machine (CMM). Finally, the Finite Element...

متن کامل

Numerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method

n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005